An MCB must be replaced a er three to five short-circuit situ- The disadvantage of a glass holder, namely the logistic process ations. There must, therefore, be some form of administration system to register which MCB has already experienced a fault. A glass fuse must be replaced a er each fault. The user must know where to find a replacement fuse. As a result, a logistic system must be put in place. There is always the risk that the fuse is replaced with a fuse of an incorrect rating, resulting in a dangerous or undesirable situation. A faulty fuse can easily be replaced and the holder hardly ever breaks. On the other hand, an MCB can become faulty as a result of its complexity or get stuck so that it does not get activated when necessary. In the event of a fault in the MCB, the entire PDU must be shut down and repaired.

The choice of which protective device to use is ultimately the

client's responsibility. The objective of this document is to

provide you with information so that you can make a well-

informed decision. You have to decide which type of fuse to

use and how many you need. If you only need overload pro-

tection, a thermal circuit breaker is a good and inexpensive solution. With that solution, you meet all the legal requirements

concerning the protection of outputs. If you want protection

against both overloading and short circuiting, the decision is

slightly more complicated. You must then decide whether to use

THE CHOICE

01. Glass fuse 02. Thermal fuse 03. MCB

you have to put in place to ensure the availability of replacement fuses, is also an advantage: the fuse's characteristics can be altered to meet the situation. A gG cartridge is provided as standard. It has a nice balance between a delayed reaction in the event of overloading (a start-up current can trip a fuse if it reacts too quickly) and speed in the event of a short circuit. A gR cartridge is even quicker, but can sometimes cause problems with start-up currents. The ideal solution is, as is o en the case, the most expensive solution: the gRL fuse. It is a special fuse which is slow to react in the overload area (up to 3x In) and extremely fast in the event of a short circuit.

We often find that people do not understand what the characteristic of an MCB means. The characteristic says something about the tipping point: whether a circuit breaker reacts thermally or magnetically. For a type B characteristic, the tipping point is 3*In. For a type C characteristic, it is 5*In and for a type D characteristic, it is 10*In. Therefore, a 16 A circuit breaker with a type B characteristic, experiences a 50 A current as a short circuit and shuts down within a couple of milliseconds. For the same circuit breaker with a type C characteristic, a 50 A current is still in the thermal zone and it may take a couple of seconds before it trips (see the graph). This could be, for example, a start-up current which has a brief peak of 50 A and then falls to 10 A. A device with a type B characteristic trips in that situation, while a device with a type C characteristic does not. The characteristic of the circuit breaker only says something about the breaker's overload phase (thermal) and not about the breaker's short-circuit phase (magnetic). In the short-circuit phase, they are as fast as each other.

"An MCB consists of more than one hundred mechanical parts. That makes it more vulnerable than a glass fuse."

However, a glass fuse has the disadvantage that it ages over time and depending on the load it is subjected to, it must be replaced every so many years. In short, the ideal protective device does not (yet) exist. Although there have been developments in the field of electronic safety switches, they are not yet available and will probably be much more expensive than the current solutions. In order to make the right decision, you must know your infrastructure (short-circuit currents, selectivity, etc.) and know what the consequences of your choice are. The number of fuses you have to use depends on a number of factors.

a glass fuse or an MCB (circuit breaker)

www.conteg.com

If there is a 32 A feed present, you have to use at least two 16 A fuses, otherwise you are only able to use 16 A of the available 32 A. However, you can also decide to use more than two fuses to restrict the faults in the system to the smallest possible area. If you also want to do this for short-circuit protection, you must pay close attention to the selectivity of the chosen fuses. A thermal breaker, for example, is not selective with regard to short circuiting. A glass fuse or MCB need a lot of space.

"Overloading can, for the most part, be prevented by using ammeters, while a short circuit cannot be predicted."

CONCLUSION

If you want protection against overloading and/or short-circuiting, you must analyse the risk of it happening and the cost incurred if it does happen. Overloading can usually be prevented by using ammeters, but a short circuit cannot be predicted. If the risks are too great for you, you must install fuses to limit any faults. You can only make the right decision concerning the type of fuse to use if you have thorough knowledge of the electrical installation in your data centre. Schleifenbauer then produces the rack PDU with the fuses that are most suitable for your situation.

CONTEG

CONTEG is a Czech manufacturer of IT racks, cooling units and data center accesssories. The rack PDUs are built to customer specifications as OEM products. You can compare the configuration and production processes with Lego[®]: a limited number of building blocks can create an unlimited number of final products. CONTEG rack PDUs are adapted to suit the electronic infrastructure of your data centre instead of the electronic infrastructure being adapted to the rack PDU. You can find more information at <u>www.conteg.com</u>

CONTEG, spol. s r.o. Stetkova 1638/18 140 00 Prague 4 **Czech Republic**

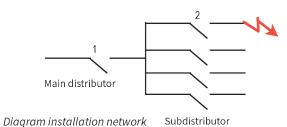
Tel.: +420 565 300 358 info@conteg.com www.conteg.com

CONTEC

WHITEPAPER

WHICH **TYPE OF** FUSE SHOULD BE **USED IN A RACK PDU?**

www.conteg.com


WHICH TYPE OF FUSE TO USE IN A RACK PDU?

There are many di erent theories concerning the need to protect a rack PDU (Power Distribution Unit). A fuse is, by definition, a single point of failure and is, therefore, not something you want to have in a data centre. However, there are situations in which a fuse is necessary and in some cases, even compulsory.

WHY DO YOU WANT TO USE A FUSE?

SAFETY is the most important reason: a fuse is used to prevent a fire caused by an overload or a short circuit. An output on a rack PDU must be protected by a protective device which has a rating equal to the output's maximum nominal value. This means that a rack PDU which is connected to a 32 A feed and which has outputs which can be subjected to a maximum load of 16 A (for example, CEE 7/4 (Schuko) or IEC 320 C19) must be protected with a fuse with a maximum rating of 16 A. IEC 320 C13 is an exception to this, because IEC 320 C13 can be subjected to a maximum load of 10 A. Since they are usually used in groups, it is permitted to protect them with a 16 A fuse. A 32 A, 3-phase rack PDU with, for example, IEC 320 C13 and IEC 320 C19 outputs, therefore, requires at least six fuses.

ISOLATING FAULTS to a certain segment is another reason for using fuses. An unprotected rack PDU is fully shut down in the event of a fault. A protected rack PDU can isolate the fault to a certain segment of the rack PDU and, as a result, guarantee the continuity of the other devices. Fuses are installed at various levels in the installation network (see the diagram below).

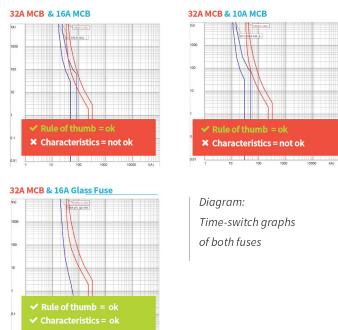
You can look at a rack PDU in the same way. It is often connected to a current circuit and has its own protection (sometimes shared between a number of rack PDUs). If a fault occurs a er 2, you only want protective device 2 to be activated and not protective device 1, to prevent the rest of the rack PDU from being shut down. This is called selectivity. It is one of the most important parameters that must be well understood when making a decision regarding the use of fuses. Selectivity occurs if a fuse reacts before the preceding (main) fuse. If, in the above example, 2 always reacts before 1, there is 100% selectivity of 2 with regard to 1. However, in practice, 2 is only selective with regard to 1 up to a certain short circuit rating and not above.

WHAT DO YOU WANT TO PROTECT THE SYSTEM AGAINST?

It is a good idea to first ask yourself what you want to protect the system against: do you want to prevent overloading or shortcircuiting, or maybe both? To help you decide, we will explain both risks below.

OVERLOADING occurs if more power is consumed than is permitted for the components concerned over an extended period of time. The speed at which the protective device is activated depends on the type of protective device and its specifications. If you only want protection against overloading, we recommend a thermal protective device that uses a bimetallic strip. If the protective device is activated, the user can reset it himself by pressing the jump switch.

A SHORT CIRCUIT is caused by direct contact between the phase and neutral conductor (or earth), which creates a current equal to the maximum short circuit value at that point. It is important to know this value so that you can choose the right protective device. The short-circuit current is closest to the source (transformer or UPS) and reduces as a result of the attenuation and losses in the wiring and the contact resistances at all the intermediate switches and fuses. Safety switches provide protection up to a certain maximum short-circuit current. If the short-circuit current a er a protective device (fuse) is greater than the protective device's rating, there is a risk of electric arcing in the protective device. This can result in a fire and the current to the fault not being interrupted, which is extremely undesirable


www.conteg.com

WHAT DO YOU HAVE TO KNOW?

In order to be able to make the correct decision concerning fumust have at least six 16 A segments, with each segment having ses in your rack PDU, you must understand a couple of things. An a separate protective device. If these protective devices are not overview of the terms involved in this decision making process, selective with regard to the preceding fuse, a short circuit in one output results in the entire rack PDU shutting down. Is this a deand a short explanation of each term, are given below. sirable situation?

SELECTIVITY is one of the most important properties of a fuse. A factor is used to calculate whether the selectivity between two consecutive fuses is guaranteed.

The legal selectivity value between glass fuses is 1.6. This means that a 16 A glass fuse is selective with regard to a 32 **SHORT-CIRCUIT CURRENT** is the maximum current that can equals 25.6). The selectivity between Miniature Circuit Breakers (MCBs) or in a mixed environment is more di icult to determine. To determine this, you must place the time-switch graphs of both fuses over each other to show which fuse is activated first at which short-circuit current.

POWER CONSUMPTION A fuse consumes power. Since a fuse always reacts thermally (sometimes also magnetically), it is logical that a certain part of the electrical energy is used to produce heat. If too much heat is produced (the current is too high), the fuse trips. The power consumption is o en indicated by the voltage drop across the fuse. This voltage drop multi-0.01 plied by the current (I) is the power consumption. A fuse that The selectivity class is usually stated on the MCBs, but that value is subjected to a heavy load (> 80% of I nominal) consumes does not say much. You must calculate the short-circuit current three to five watts of power. An MCB uses slightly less energy for every location in the data centre. Only if you also know the than a glass fuse. If a number of fuses are used in a rack PDU technical details of the preceding fuses, are you able to determi-(often with thermal breakers), the number of fuses more or less compensates for the lower current strength per fuse: ten ne whether a fuse is selective with regard to the preceding fuse in the chain. Experience has shown that not everyone knows this, 1.5 A breakers consume approximately just as much power even though it is important to know what the consequences are as one 15 A breaker in the event of a short circuit. Example: a 3-phase 32 A rack PDU

CONTEG

"We recommend you have a specialist draw up a detailed diagram that contains all the short-circuit currents."

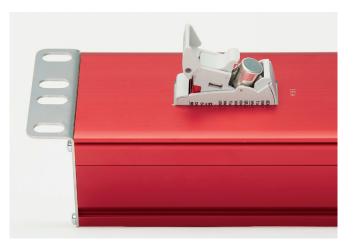
A glass fuse, but not with regard to a 25 A glass fuse (1.6 x 16 be generated at a certain point in an electrical installation. Once upon a time, a short-circuit current close to a transformer or UPS was many times greater than the current generated in a server rack. This was because of attenuation by the power cables and all the contact resistances in the installation. Increasing integration of the distribution via busbar has resulted in an increase in short-circuit currents in a server rack. Nowadays, busbars with a nominal value of 200 A to 1,000 A are found less than a metre from the server box. There is hardly any attenuation and short-circuit currents of up to 100 kA (kilo-amperes) are not uncommon.

> Although there are programs that can calculate short-circuit currents, we recommend you have a detailed working diagram drawn up by a specialist, containing all the short-circuit currents. This document allows you to make a well-founded decision concerning which fuses to use in a rack PDU.

AMBIENT TEMPERATURE The ambient temperature has an instrument. On the other hand, if an MCB has experienced a influence on a fuse's properties. The higher the temperature, number of short-circuit situations (3-5) with high short-circuit the faster a fuse reacts to overloading. This must be taken into consideration if the rack PDU is located in the jet of warm ventilation air coming o IT equipment.

MAXIMUM THROUGHPUT ENERGY A fuse allows a certain amount of energy to pass before the current is interrupted. This energy is called the throughput energy and is calculated using the following formula: 12 * t (the short-circuit current squared multiplied by the time). This energy must be small enough to ensure that the equipment and wiring are not damaged or gy than an MCB, because the melting process in a glass fuse is every two or three years. faster than the thermal-mechanical process in an MCB.

PROSPECTIVE SHORT-CIRCUIT CURRENT This term indicates the maximum short-circuit current a protective device can handle. A normal MCB usually has a prospective short-circuit current of 6,000 A (6 kA). This means that the device can interrupt currents up to 6,000 A. If there is a short-circuit current at that point of more than 6 kA, there is a risk of serious damage to the MCB, of a fire or of a persistent electric arc, which allows the current to jump to the following wiring, resulting almost certainly in a fire. It is, therefore, important to know what the short-circuit current is at the location where you want to use a fuse. Thermal fuses usually have a higher prospective shortcircuit current; when the wire has melted, there is a large gap between the phase and the following wiring. In a sand-filled fuse, the melting silver wire reacts with the silicone in the fuse to produce a kind of glass wire with an infinite resistance.


FLEXIBILITY An integrated MCB or thermal fuse cannot be replaced without dismantling the entire rack PDU. If the fuse is broken or worn, the entire rack PDU must be dismantled. A glass fuse can always be replaced without having to dismantle the rack PDU. A risk in this is that the fuse may accidentally be replaced with a fuse of the wrong rating. With a permanent fuse, you do not run that risk.

RELIABILITY MCBs and thermal fuses work based on a mechanical principle. A glass fuse works based on a physical and a chemical reaction (melting and reacting). Both principles have the MCB can immediately be reactivated a er a fault. advantages and disadvantages. An MCB has more than one hundred components, which makes it more vulnerable than a single silver wire (or a wire of any alloy). When operating under normal conditions, the MCB has proven itself to be a reliable

currents, it must be replaced.

Furthermore, an MCB can fail in two di erent ways. If it is not used for a long time, it is possible that it does not interrupt the current when required, and secondly, it is possible that it cannot be reset a er activation. A glass fuse appears to be straightforward: it either works, or it does not. However, a glass fuse can be weakened by short current surges, which create small melted points in the metal wire, which may change the properties of the fuse. A glass fuse is also more a ected by burnt. Usually, a glass fuse has a much lower throughput ener- ageing than an MCB. In fact, a glass fuse should be replaced

"The higher the temperature, the faster a fuse reacts to overloading This must be taken into consideration if the rack PDU is located in the jet of warm ventilation air coming o IT equipment."

EASE OF USE An MCB is undeniably easier to use. A fault is visually displayed (also if the switch has a locking pin) and

www.conteg.com

www.conteg.com

